jueves, 26 de marzo de 2015

Resultado de imagen para sistemas de informacion geográfica y nuevas tecnologias




LOS SISTEMAS DE INFORMACIÓN GEOGRÁFICA
Las definiciones de sistemas de información geográfica (SIG o GIS en inglés) son variadas y más o menos complejas. Simplificando, son programas o los productos obtenidos con tales programas que gestionan, manejan y analizan información cartográfica.
Esta información cartográfica tiene una doble vertiente. Por un lado tiene una simplificación (modelización) geométrica (puntos, líneas, polígonos...) que constituye la componente gráfica. Esta es la componente que manejan programas habitualmente empleados para el manejo de esta información como son los programas de diseño asistido por ordenador (CAD). Sin embargo, la componente gráfica lleva asociada otra información acerca de lo que representa: una línea representa un río que está altamente contaminado y cuya longitud es superior a 10000 m. Pues esa información esta totalmente ligada (mediante una sencilla base de datos) a la gráfica en un SIG.
Esta gestión conjunta de ambas componentes dota de unas posibilidades impresionantes a los SIG en el análisis de la información, manipulación y presentación de resultados no solo en forma de mapas, sino también informes, tablas, gráficos...
La información de la que se parte puede tener varios orígenes entre los que están los GPS y la teledetección.
FUNCIONAMIENTO DE UN SIG
El SIG funciona como una base de datos con información geográfica (datos alfanuméricos) que se encuentra asociada por un identificador común a los objetos gráficos de un mapa digital. De esta forma, señalando un objeto se conocen sus atributos e, inversamente, preguntando por un registro de la base de datos se puede saber su localización en la cartografía.La razón fundamental para utilizar un SIG es la gestión de información espacial. El sistema permite separar la información en diferentes capas temáticas y las almacena independientemente, permitiendo trabajar con ellas de manera rápida y sencilla, y facilitando al profesional la posibilidad de relacionar la información existente a través de la topología de los objetos, con el fin de generar otra nueva que no podríamos obtener de otra forma.Las principales cuestiones que puede resolver un Sistema de Información Geográfica, ordenadas de menor a mayor complejidad, son:
1.    Localización: preguntar por las características de un lugar concreto.
2.    Condición: el cumplimiento o no de unas condiciones impuestas al sistema.
3.    Tendencia: comparación entre situaciones temporales o espaciales distintas de alguna característica.
4.    Rutas: cálculo de rutas óptimas entre dos o más puntos.
5.    Pautas: detección de pautas espaciales.
6.    Modelos: generación de modelos a partir de fenómenos o actuaciones simuladas.
Por ser tan versátiles, el campo de aplicación de los Sistemas de Información Geográfica es muy amplio, pudiendo utilizarse en la mayoría de las actividades con un componente espacial. La profunda revolución que han provocado las nuevas tecnologías ha incidido de manera decisiva en su 
LOS SISTEMAS DE POSICIONAMIENTO VÍA SATÉLITE
Resultado de imagen para sistemas de informacion geográfica y nuevas tecnologias

Esta es la herramienta sin duda la que más utilidad directa tiene para los profesionales a los que está dirigido este texto. Quizá haya quien con esta descripción no encaje el concepto, pero seguro que si se dice GPS, se sabe exactamente a lo que se refiere, al menos a se refiere a su aplicación en la conducción.

GPS (Global Positioning System - Sistema de posicionamiento global) hace referencia a la constelación de satlelites estadounidense con origen militar para el posicionamiento de objetos. Análogos a este sistema son el soviético y también militar Glonass, y el europeo de origen civil Galileo que está dando sus primeros pasos. Si alguien oye hablar de WAAS o EGNOS, estos son también sistemas de poscionamiento con otro tipo de satélites.
Los GPS han visto como en los últimos años se ha mejorado su precisión desde que el Gobierno estadounidense desactivó en mayo de 2000 una opción denominada disponibilidad selectiva que hace referencia a la distorsión puntual y variable de la señal, debido al origen militar del sistema.
Existen diferentes formas de clasificar los receptores en función de su precisión,pero de una forma sencilla y práctica, se podría hacer en:
·                     navegadores: precisión entre 5-10m, válidos para la mayor parte del uso a nivel particular
·                     monofrecuencia: precisión hasta submétrica, válido para la práctica totalidad de la producción cartográfica
·                     bifrecuencia: precisión milimétrica, válida para buena parte de los levantamientos topográficos habituales
Hay varios modos de toma de datos, y varios modos de tramiento de los datos para obtener diferentes precisiones finales. Entrar a describir estos métodos excede del objetivo de esta página.

LA TELEDETECCIÓN
Resultado de imagen para teledeteccion geografica
La teledetección es una técnica compleja de obtención de información de la tierra a partir de imágenes generadas por sensores remotos montados generalmente en satélites. La complejedad de esta técnica impide entrar en profundidad en un lugar como este, por lo que únicamente se pretende que el lector sepa alguna de sus utilidades y cuente con una idea básica de lo que es y cual es el proceso.
El ojo humano percibe un rango del espectro electromagnético denominado como visible. Sin embargo los sensores empleados en teledetección suelen detectar radiaciones fuera de este rango de gran utilidad según que objetivo. Así por ejemplo, la vegetación activa refleja una cantidad importante de infrarrojo cercano, lo que permite discriminar regadío de secano.
Un sistema de teledetección está formado por:
·                     una fuente de energía (generalemente el sol)
·                     unos objetos que reflejan parte de esa energía (cada tipo de objeto refleja ciertas longitudes de onda y absorbe otras)
·                     un sensor remoto, generalmente montado en un satélite, que recibe la señal y la convierte en una imagen digital
·                     personal especializado que mediante el empleo de programas específicos trata las imágenes para obtener el producto deseado
El satélite más conocido es el Landsat, del cual ya se han enviado diferentes misiones en las que se han ido cambiando los sensores. Los sensores más empleados de Lansat son TM y ETM+.
Las aplicaciones son variadas: agricultura de precisión, cartografía y evolución de usos, daños e inventario de recursos naturales, seguimiento de acuíferos, meteorología...





Resultado de imagen para representacion gráfica plana





Representación Geográfica





Mediante los mapas o planos se realiza la representación geográfica de la Tierra; su elaboración es el objeto de la cartografía.







Como ya se dijo, los meridianos y paralelos permiten situar un punto sobre la superficie terrestre y establecer su latitud y longitud, no obstante, para fijar esas superficies sobre un plano es preciso recurrir a la proyección, es decir al traslado o extensión sobre el plano de las coordenadas esféricas de la Tierra (la imagen real) representadas por los meridianos y paralelos.







Representar en forma plana una superficie curva conlleva una pérdida de exactitud, ya que el traslado de los datos implica la deformación de los rasgos. No obstante, mediante los mapas se puede conseguir una aproximación muy cercana a la realidad.







Existen varios tipos de proyecciones, el destino de unos u otros dependen de su aplicación, ya que todas sufren en alguna medida una deformación de la realidad; en las llamadasproyecciones equivalentes se respeta la realidad de la superficie, mientras que en las llamadasproyecciones conformes se respeta la realidad de los ángulos. De cualquier forma, el origen de las proyecciones son siempre la red de círculos de meridianos y paralelos, independientemente del método de proyección utilizado.







Los métodos de proyección más utilizados son la cilíndrica y su variante de Mercator, la cónicay la plana. Otras formas de proyección pueden hacerse según el punto de mira, el cual puede estar en el infinito (ortográfica u ortogonal), en la superficie terrestre (estereográfica), o en el centro de la Tierra (central); y según que ese punto se encuentre mirando en dirección al polo (polar), al ecuador (ecuatorial) o a los 40º de latitud Norte (horizontal).







Proyección cilíndrica




En la proyección cilíndrica los puntos de la esfera son proyectados sobre un cilindro. En este caso se supone el globo encerrado en un cilindro tangente al ecuador. Los meridianos y paralelos se visualizan perpendiculares unos a otros, en forma de cuadrícula.
Proyección cilíndrica Proyección cilíndrica
P

Proyección cilíndrica

Con este método la zona de tangencia, es decir, los puntos de la superficie que corresponden con el ecuador, apenas presentan error, pero conforme nos desplazamos hacia las latitudes más altas se manifiestan también las mayores deformaciones; éstas son máximas en los polos.


Existe una variante de la proyección cilíndrica, la Mercator, que es la más conocida, en la cual los paralelos se van separando conforme nos acercamos a los polos. Esta proyección distorsiona el tamaño de las masas que se encuentran en latitudes superiores, por ello suele utilizarse más bien para cartografiar zonas próximas al ecuador, en que la deformación es menor.


La proyección cónica consiste en envolver la esfera terrestre en un cono tangente a un paralelo, con base en el ecuador y vértice en uno de los polos.

Tras proyectar las líneas de latitud y longitud, se corta el cono por una generatriz, se desarrolla y se obtiene un plano en el cual los meridianos convergen en el polo formando una serie de radios; por su parte los paralelos quedan representados por arcos de circunferencia concéntricas con centro en el polo.


En este tipo de proyección las zonas de mínima deformación corresponden con el paralelo en el cual el cono es paralelo a la Tierra; se utiliza preferentemente para cartografiar latitudes medias, en especial las que manifiestan amplitudes muy amplias este-oeste, por ejemplo el continente africano.
Proyección cónica  Proyección cónica
Proyección cónica



Proyección plana


La proyección plana, también llamada proyección acimutal o cenital, consiste en proyectar la red de meridianos y paralelos sobre un plano tangente a la superficie del globo, que suele ser por lo general el Polo Norte o el Polo Sur. Si la tangencia se efectúa en uno de los polos, los paralelos se muestran como círculos concéntricos cuyo centro es el propio polo, mientras que los meridianos se desarrollan como radios de esos círculos.
Proyección plana  Proyección plana
Proyección plana



En este tipo de proyección las deformaciones son mínimas en los polos, y van aumentando conforme nos alejamos de ellos, por ese motivo es un sistema adecuado para cartografiar preferiblemente las regiones polares.





Escala

La escala de un mapa se define como la relación existente entre el tamaño de un objeto sobre el mapa, o la distancia que separa dos puntos sobre él, y el tamaño o distancia real sobre el terreno. El valor de escala suele estar rotulado en la leyenda del mapa, normalmente en forma de fracción.


Así, cuando decimos que un mapa tiene una escala 1/1.000.000, significa que la unidad de medida sobre el mapa (imaginemos que esa unidad es 1 centímetro) equivale a un millón de veces esa unidad sobre el terreno. O también, que cualquier distancia medida sobre el mapa es un millón de veces esa medida sobre el terreno.

miércoles, 25 de marzo de 2015

Técnicas de recolección de información geográfica 
Resultado de imagen para tipos de tecnicas de recoleccion de informacion geografica








La creación de datos
Dada la amplia disponibilidad de imágenes orto-rectificadas (tanto de satélite y como aéreas), la digitalización por esta vía se está convirtiendo en la principal fuente de extracción de datos geográficos. Esta forma de digitalización implica la búsqueda de datos geográficos directamente en las imágenes aéreas en lugar del método tradicional de la localización de formas geográficas sobre un tablero de digitalización.Las modernas tecnologías SIG trabajan con información digital, para la cual existen varios métodos utilizados en la creación de datos digitales. El método más utilizado es la digitalización, donde a partir de un mapa impreso o con información tomada en campo se transfiere a un medio digital por el empleo de un programa de Diseño Asistido por Ordenador (DAO o CAD) con capacidades de georreferenciación.

La representación de los datos

Los datos SIG representan los objetos del mundo real (carreteras, el uso del suelo, altitudes). Los objetos del mundo real se pueden dividir en dos abstracciones: objetos discretos (una casa) y continuos (cantidad de lluvia caída, una elevación). Existen dos formas de almacenar los datos en un SIG: raster y vectorial.
Los SIG que se centran en el manejo de datos en formato vectorial son más populares en el mercado. No obstante, los SIG raster son muy utilizados en estudios que requieran la generación de capas continuas, necesarias en fenómenos no discretos; también en estudios medioambientales donde no se requiere una excesiva precisión espacial (contaminación atmosférica, distribución de temperaturas, localización de especies marinas, análisis geológicos, etc.).

Raster

Un tipo de datos raster es, en esencia, cualquier tipo de imagen digital representada en mallas. El modelo de SIG raster o de retícula se centra en las propiedades del espacio más que en la precisión de la localización. Divide el espacio en celdas regulares donde cada una de ellas representa un único valor. Se trata de un modelo de datos muy adecuado para la representación de variables continuas en el espacio.
Los datos raster se compone de filas y columnas de celdas, cada celda almacena un valor único. Los datos raster pueden ser imágenes (imágenes raster), con un valor de color en cada celda (o píxel). Otros valores registrados para cada celda puede ser un valor discreto, como el uso del suelo, valores continuos, como temperaturas, o un valor nulo si no se dispone de datos. Si bien una trama de celdas almacena un valor único, estas pueden ampliarse mediante el uso de las bandas del raster para representar los colores RGB (rojo, verde, azul), o una tabla extendida de atributos con una fila para cada valor único de células. La resolución del conjunto de datos raster es el ancho de la celda en unidades sobre el terreno.Cualquiera que esté familiarizado con la fotografía digital reconoce el píxel como la unidad menor de información de una imagen. Una combinación de estos píxeles creará una imagen, a distinción del uso común de gráficos vectoriales escalables que son la base del modelo vectorial. 
Los datos raster se almacenan en diferentes formatos, desde un archivo estándar basado en la estructura de TIFF, JPEG, etc. a grandes objetos binarios (BLOB), los datos almacenados directamente en Sistema de gestión de base de datos. El almacenamiento en bases de datos, cuando se indexan, por lo general permiten una rápida recuperación de los datos raster, pero a costa de requerir el almacenamiento de millones registros con un importante tamaño de memoria. En un modelo raster cuanto mayores sean las dimensiones de las celdas menor es la precisión o detalle (resolución) de la representación del espacio geográfico.

Vectorial

En un SIG, las características geográficas se expresan con frecuencia como vectores, manteniendo las características geométricas de las figuras.
Para modelar digitalmente las entidades del mundo real se utilizan tres elementos geométricos: el punto, la línea y el polígono.9Los elementos vectoriales pueden crearse respetando una integridad territorial a través de la aplicación de unas normas topológicas tales como que "los polígonos no deben superponerse". Los datos vectoriales se pueden utilizar para representar variaciones continuas de fenómenos. Las líneas de contorno y las redes irregulares de triángulos (TIN) se utilizan para representar la altitud u otros valores en continua evolución. Los TIN son registros de valores en un punto localizado, que están conectados por líneas para formar una malla irregular de triángulos. La cara de los triángulos representan, por ejemplo, la superficie del terreno.En los datos vectoriales, el interés de las representaciones se centra en la precisión de la localización de los elementos geográficos sobre el espacio y donde los fenómenos a representar son discretos, es decir, de límites definidos. 
  • Puntos
Los puntos se utilizan para las entidades geográficas que mejor pueden ser expresadas por un único punto de referencia. En otras palabras: la simple ubicación. Por ejemplo, las localizaciones de los pozos, picos de elevaciones o puntos de interés. Los puntos transmiten la menor cantidad de información de estos tipos de archivo y no son posibles las mediciones. También se pueden utilizar para representar zonas a una escala pequeña. Por ejemplo, las ciudades en un mapa del mundo estarán representadas por puntos en lugar de polígonos.
  • Líneas o polilíneas
Las líneas unidimensionales o polilíneas10 son usadas para rasgos lineales como ríos, caminos, ferrocarriles, rastros, líneas topográficas o curvas de nivel. De igual forma que en las entidades puntuales, en pequeñas escalas pueden ser utilizados para representar polígonos. En los elementos lineales puede medirse la distancia.
  • Polígonos
Los polígonos bidimensionales se utilizan para representar elementos geográficos que cubren un área particular de la superficie de la tierra. Estas entidades pueden representar lagos, límites de parques naturales, edificios, provincias, o los usos del suelo, por ejemplo. Los polígonos transmiten la mayor cantidad de información en archivos con datos vectoriales y en ellos se pueden medir el perímetro y el área.

Datos no espaciales

Los datos no espaciales también pueden ser almacenados junto con los datos espaciales, aquellos representados por las coordenadas de la geometría de un vector o por la posición de una celda raster. En los datos vectoriales, los datos adicionales contiene atributos de la entidad geográfica. Por ejemplo, un polígono de un inventario forestal también puede tener un valor que funcione como identificador e información sobre especies de árboles. En los datos raster el valor de la celda puede almacenar la información de atributo, pero también puede ser utilizado como un identificador referido a los registros de una tabla.

La captura de los datos 

Los datos impresos en papel o mapas en película PET pueden ser digitalizados o escaneados para producir datos digitales.La captura de datos, y la introducción de información en el sistema consume la mayor parte del tiempo de los profesionales de los SIG. Hay una amplia variedad de métodos utilizados para introducir datos en un SIG almacenados en un formato digital.
Con la digitalización de cartografía en soporte analógico se producen datos vectoriales a través de trazas de puntos, líneas, y límites de polígonos. Este trabajo puede ser desarrollado por una persona de forma manual o a través de programas de vectorización que automatizan la labor sobre un mapa escaneado. No obstante, en este último caso siempre será necesario su revisión y edición manual, dependiendo del nivel de calidad que se desea obtener.
Los datos obtenidos de mediciones topográficas pueden ser introducidos directamente en un SIG a través de instrumentos de captura de datos digitales mediante una técnica llamada geometría analítica. Además, las coordenadas de posición tomadas a través un Sistema de Posicionamiento Global (GPS) también pueden ser introducidas directamente en un SIG.
Los sensores remotos también juegan un papel importante en la recolección de datos. Son sensores, como cámaras, escáneres o LIDAR acoplados a plataformas móviles como aviones o satélites.
Cuando se capturan los datos, el usuario debe considerar si estos deben ser tomados con una exactitud relativa o con una absoluta precisión. Esta decisión es importante ya que no solo influye en la interpretación de la información, sino también en el costo de su captura.La teleobservación por satélite proporciona otra fuente importante de datos espaciales. En este caso los satélites utilizan diferentes sensores para medir la reflectancia de las partes del espectro electromagnético, o las ondas de radio que se envían a partir de un sensor activo como el radar. La teledetección recopila datos raster que pueden ser procesados usando diferentes bandas para determinar las clases y objetos de interés, tales como las diferentes cubiertas de la tierra.
Además de la captura y la entrada en datos espaciales, los datos de atributos también son introducidos en un SIG. Durante los procesos de digitalización de la cartografía es frecuente que se den fallos topológicos involuntarios (danglesundershootsovershoots,switchbacksknotsloops, etc.) en los datos vectoriales y que deberán ser corregidos. Tras introducir los datos en un SIG, estos normalmente requerirán de una edición o procesado posterior para eliminar los errores citados. Se deberá de hacer una "corrección topológica" antes de que puedan ser utilizados en algunos análisis avanzados y, así por ejemplo, en una red de carreteras las líneas deberán estar conectadas con nodos en las intersecciones.

Conversión de datos raster-vectorial

Los SIG pueden llevar a cabo una reestructuración de los datos para transformarlos en diferentes formatos. Por ejemplo, es posible convertir una imagen de satélite a un mapa de elementos vectoriales mediante la generación de líneas en torno a celdas con una misma clasificación determinando la relación espacial de estas, tales como proximidad o inclusión.
La vectorización no asistida de imágenes raster mediante algoritmos avanzados es una técnica que se viene desarrollado desde finales de los años 60 del siglo XX. Para ello se recurre a la mejora del contraste, imágenes en falso color así como el diseño de filtros mediante la implementación de transformadas de Fourier en dos dimensiones.
Al proceso inverso de conversión de datos vectorial a una estructura de datos basada en un matriz raster se le denomina rasterización.
Dado que los datos digitales se recogen y se almacenan en ambas formas, vectorial y raster, un SIG debe ser capaz de convertir los datos geográficos de una estructura de almacenamiento a otra.

Proyecciones, sistemas de coordenadas y reproyección

Antes de analizar los datos en el SIG la cartografía debe estar toda ella en una misma proyección y sistemas de coordenadas. Para ello muchas veces es necesario reproyectar las capas de información antes de integrarlas en el sistema de información geográfica.
La proyección es un componente fundamental a la hora de crear un mapa. Una proyección matemática es la manera de transferir información desde un modelo de la Tierra, el cual representa una superficie curva en tres dimensiones, a otro de dos dimensiones como es el papel o la pantalla de un ordenador. Para ello se utilizan diferentes proyecciones cartográficas según el tipo de mapa que se desea crear, ya que existen determinadas proyecciones que se adaptan mejor a unos usos concretos que a otros. Por ejemplo, una proyección que representa con exactitud la forma de los continentes distorsiona, por el contrario, sus tamaños relativos.
Dado que gran parte de la información en un SIG proviene de cartografía ya existente, un sistema de información geográfica utiliza la potencia de procesamiento de la computadora para transformar la información digital, obtenida de fuentes con diferentes proyecciones y/o diferentes sistemas de coordenadas, a una proyección y sistema de coordenadas común. En el caso de las imágenes (ortofotos, imágenes de satélite, etc.) este proceso se denomina rectificación.

Análisis espacial mediante SIG


Modelo topológicoDada la amplia gama de técnicas de análisis espacial que se han desarrollado durante el último medio siglo, cualquier resumen o revisión sólo puede cubrir el tema a una profundidad limitada. Este es un campo que cambia rápidamente y los paquetes de software SIG incluyen cada vez más herramientas de análisis, ya sea en las versiones estándar o como extensiones opcionales de este. En muchos casos tales herramientas son proporcionadas por los proveedores del software original, mientras que en otros casos las implementaciones de estas nuevas funcionalidades se han desarrollado y son proporcionados por terceros. Además, muchos productos ofrecen kits de desarrollo de software (SDK), lenguajes de programación, lenguajes de scripting, etc. para el desarrollo de herramientas propias de análisis u otras funciones.

Para llevar a cabo análisis en los que es necesario que exista consistencia topológica de los elementos de la base de datos suele ser necesario realizar previamente una validación y corrección topológica de la información gráfica. Para ello existen herramientas en los SIG que facilitan la rectificación de errores comunes de manera automática o semiautomática.

Redes

Un sistema de información geográfica puede simular flujos a lo largo de una red lineal. Valores como la pendiente, el límite de velocidad, niveles de servicio, etc. pueden ser incorporados al modelo con el fin de obtener una mayor precisión. El uso de SIG para el modelado de redes suele ser comúnmente empleado en la planificación del transporte, hidrológica o la gestión de infraestructura lineales.Un SIG destinado al cálculo de rutas óptimas para servicios de emergencias es capaz de determinar el camino más corto entre dos puntos teniendo en cuenta tanto direcciones y sentidos de circulación como direcciones prohibidas, etc. evitando áreas impracticables. Un SIG para la gerencia de una red de abastecimiento de aguas sería capaz de determinar, por ejemplo, a cuantos abonados afectaría el corte del servicio en un determinado punto de la red.

Superposición de mapas

La combinación de varios conjuntos de datos espaciales (puntos, líneas o polígonos) puede crear otro nuevo conjunto de datos vectoriales. Visualmente sería similar al apilamiento de varios mapas de una misma región. Estas superposiciones son similares a las superposiciones matemáticas del diagrama de Venn. Una unión de capas superpuestas combina las características geográficas y las tablas de atributos de todas ellas en una nueva capa. En el caso de realizar una intersección de capas esta definiría la zona en las que ambas se superponen, y el resultado mantiene el conjunto de atributos para cada una de las regiones. En el caso de una superposición de diferenciasimétrica se define un área resultante que incluye la superficie total de ambas capas a excepción de la zona de intersección.

Cartografía automatizada

Resultado de imagen para definicion cartografia digital
En la práctica esto sería un subconjunto de los SIG que equivaldría a la fase de composición final del mapa, dado que en la mayoría de los casos no todos los software de sistemas de información geográfica poseen esta funcionalidad.Tanto la cartografía digital como los sistemas de información geográfica codifican relaciones espaciales en representaciones formales estructuradas. Los SIG son usados en la creación de cartografía digital como herramientas que permiten realizar un proceso automatizado o semiautomatizado de elaboración de mapas denominado cartografía automatizada.
El producto cartográfico final resultante puede estar tanto en formato digital como impreso. El uso conjunto que en determinados SIG se da de potentes técnicas de análisis espacial junto con una representación cartográfica profesional de los datos, hace que se puedan crear mapas de alta calidad en un corto período. La principal dificultad en cartografía automatizada es el utilizar un único conjunto de datos para producir varios productos según diferentes tipos de escalas, una técnica conocida como generalización.

Geoestadística

Resultado de imagen para geoestadistica

Cuando se miden los fenómenos, los métodos de observación dictan la exactitud de cualquier análisis posterior. Debido a la naturaleza de los datos (por ejemplo, los patrones de tráfico en un entorno urbano, las pautas meteorológicas en el océano, etc.), grado de precisión constante o dinámico se pierde siempre en la medición. Esta pérdida de precisión se determina a partir de la escala y la distribución de los datos recogidos. Los SIG disponen de herramientas que ayudan a realizar estos análisis, destacando la generación de modelos de interpolación espacial.La geoestadística analiza patrones espaciales con el fin de conseguir predicciones a partir de datos espaciales concretos. Es una forma de ver las propiedades estadísticas de los datos espaciales. A diferencia de las aplicaciones estadísticas comunes, en la geoestadística se emplea el uso de la teoría de grafos y de matrices algebraicas para reducir el número de parámetros en los datos. Tras ello, el análisis de los datos asociados a entidad geográfica se llevaría a cabo en segundo lugar.

Geocodificación

Resultado de imagen para geocodificacion
La geocodificación puede realizarse también con datos reales más precisos (por ejemplo, cartografía catastral). En este caso el resultado de la codificación geográfica se ajustará en mayor medida a la realizada, prevaleciendo sobre el método de interpolación.Geocodificación es el proceso de asignar coordenadas geográficas (latitud-longitud) a puntos del mapa (direcciones, puntos de interés, etc.). Uno de los usos más comunes es la georreferenciación de direcciones postales. Para ello se requiere una cartografía base sobre la que referenciar los códigos geográficos. Esta capa base puede ser, por ejemplo, un tramero de ejes de calles con nombres de calles y números de policía. Las direcciones concretas que se desean georreferenciar en el mapa, que suelen proceder de tablas tabuladas, se posicionan mediante interpolación oestimación. El SIG a continuación localiza en la capa de ejes de calles el punto en el lugar más aproximado a la realidad según los algoritmos de geocodificación que utiliza.

Software SIG



El manejo de este tipo de sistemas son llevados a cabo generalmente por profesionales de diversos campos del conocimiento con experiencia en sistemas de información geográfica (cartografíageografíatopografía, etc.), ya que el uso de estas herramientas requiere una aprendizaje previo que necesita de conocer las bases metodológicas sobre las que se fundamentan. Aunque existen herramientas gratuitas para ver información geográfica, el acceso del público en general a los geodatos está dominado por los recursos en línea, como Google Earth y otros basados en tecnologíaweb mapping.La información geográfica puede ser consultada, transferida, transformada, superpuesta, procesada y mostradas utilizando numerosas aplicaciones de software. Dentro de la industria empresas comerciales como ESRIIntergraph,MapInfoBentley SystemsAutodesk o Smallworld ofrecen un completo conjunto de aplicaciones. Los gobiernos suelen optar por modificaciones ad-hoc de programas SIG, productos de código abierto o software especializado que responda a una necesidad bien definida.

Hoy por hoy dentro del software SIG se distingue a menudo seis grandes tipos de programas informáticos:
SIG de escritorio. Son aquellos que se utilizan para crear, editar, administrar, analizar y visualizar los datos geográficos. A veces se clasifican en tres subcategorías según su funcionalidad:
Visor SIG. Suelen ser software sencillos que permiten desplegar información geográfica a través de una ventana que funciona como visor y donde se pueden agregar varias capas de información.
Editor SIG. Es aquel software SIG orientado principalmente al tratamiento previo de la información geográfica para su posterior análisis. Antes de introducir datos a un SIG es necesario prepararlos para su uso en este tipo de sistemas. Se requiere transformar datos en bruto o heredados de otros sistemas en un formato utilizable por el software SIG. Por ejemplo, puede que una fotografía aérea necesite ser ortorrectificada mediantefotogrametría de modo tal que todos sus píxeles sean corregidos digitalmente para que la imagen represente una proyección ortogonal sin efectos de perspectiva y en una misma escala. Este tipo de transformaciones se pueden distinguir de las que puede llevar a cabo un SIG por el hecho de que, en este último caso, la labor suele ser más compleja y con un mayor consumo de tiempo. Por lo tanto es común que para estos casos se suela utilizar un tipo de software especializado en estas tareas.
SIG de análisis. Disponen de funcionalidades de análisis espacial y modelización cartográfica de procesos.
Sistemas de gestión de bases de datos espaciales o geográficas (SGBD espacial). Se emplean para almacenar la información geográfica, pero a menudo también proporcionan la funcionalidad de análisis y manipulación de los datos. Una base de datos geográfica o espacial es una base de datos con extensiones que dan soporte de objetos geográficos permitiendo el almacenamiento, indexación, consulta y manipulación de información geográfica y datos espaciales. Si bien algunas de estas bases de datos geográficas están implementadas para permitir también el uso de funciones de geoprocesamiento, el principal beneficio de estas se centra en la capacidades que ofrecen en el almacenamiento de datos especialmente georrefenciados. Algunas de estas capacidades incluyen un fácil acceso a este tipo de información mediante el uso de estándares de acceso a bases de datos como los controladores ODBC, la capacidad de unir o vincular fácilmente tablas de datos o la posibilidad de generar una indexación y agrupación de datos espaciales, por ejemplo.
Servidores cartográficos. Se utilizan para distribuir mapas a través de Internet (véase también los estándares de normas Open Geospatial Consortium WFS yWMS).
Servidores SIG. Proporcionan básicamente la misma funcionalidad que los SIG de escritorio pero permiten acceder a estas utilidades de geoprocesamiento a través de una red informática.
Clientes web SIG. Permiten la visualización de datos y acceder a funcionalidades de análisis y consulta de servidores SIG a través de Internet o intranet. 
Bibliotecas y extensiones espaciales. Proporcionan características adicionales que no forman parte fundamental del programa ya que pueden no ser requeridas por un usuario medio de este tipo de software. 
SIG móviles. Se usan para la recogida de datos en campo a través de dispositivos móviles (PDA, teléfonos inteligentes, tabletas, etc.). Con la adopción generalizada por parte de estos de dispositivos de localización GPS integrados, el software SIG permite utilizarlos para la captura y manejo de datos en campo. 

Comparativa de software SIG

Listado incompleto de los principales programas SIG existentes en el sector y los sistemas operativos en los que pueden funcionar sin emulación, así como su tipo de licencia.